Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. Sunil Srivastav;Sabita Neupane;Sunil Bhurtel;Nikita Katila;Sailesh Maharjan;Hyukjae Choi;Jin Tae Hong;Dong-Young Choi. 2019. J Nutr Biochem. 69. PMID: 31063918

Microbiota in the gut affect brain physiology via various pathways, and dysbiosis seems to play a role in the pathogenesis of Parkinson's disease (PD). Probiotics showed pleiotropic effects on functions of the central nervous system via microbiota-gut-brain axis. However, no studies displayed the neuroprotective effects of probiotics in the Parkinson's disease. This study aimed to test the neuroprotective effects of probiotics in two different models of PD. We evaluated neuroprotective effects of a probiotic cocktail containing Lactobacillus rhamnosus GG, Bifidobacterium animalis lactis, and Lactobacillus acidophilus in PD models induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone utilizing behavioral tests, immunohistochemistry and neurochemical analysis. To assure the neuroprotection came from increased production of butyrate, we further determined beneficial effects of butyrate in the MPTP-mediated PD model. The probiotic mixture overtly protected the dopaminergic neurons against MPTP neurotoxicity. However, the probiotics downregulated expression of monoamine oxidase (MAO) B in the striatum, which was accompanied by a lower level of 1-methyl-4-phenylpyridinium (MPP+), the main neurotoxic metabolite of MPTP. Thus, we extended the investigation into the rotenone-induced PD model. Rescuing effects of the probiotics were observed in the setup, which came with increased levels of neurotrophic factors and butyrate in the brain. Lactobacillus rhamnosus GG was identified to be a major contributor to the induction of neurotrophic factors and downregulation of MAO B. Finally, we demonstrated that sodium butyrate attenuated MPTP-induced neuronal loss in the nigrostriatal pathway. Probiotics could ameliorate neurodegeneration at least partially by increasing butyrate level. These data highlight the role of probiotics for brain health, and their potential as a preventive measure for neurodegenerative diseases such as PD.
Assessment of Probiotics Mixture on Memory Function, Inflammation Markers, and Oxidative Stress in an Alzheimer's Disease Model of Rats. Shima Mehrabadi;Seyed Shahabeddin Sadr. 2020. Iran Biomed J. 24. PMID: 32306720

Background: The most important cause of neurodegeneration in Alzheimer's disease (AD) is associated with inflammation and oxidative stress. Probiotics are microorganisms that are believed to be beneficial to human and animals. Probiotics reduce oxidative stress and inflammation in some cases. Therefore, this study determined the effects of probiotics mixture on the biomarkers of oxidative stress and inflammation in an AD model of rats. Methods: In this study, 50 rats were allocated to five groups, namely control, sham, and AD groups with Aβ1-40 intra-hippocampal injection, as well as AD + rivastigmine and AD + probiotics groups with Aβ1-40 intra-hippocampal injection and 2 ml (1010 CFU) of probiotics (Lactobacillus reuteri, Lactobacillus rhamnosus, and Bifidobacterium infantis) orally once a day for 10 weeks. MWM was used to assess memory and learning. To detect Aβ plaque, Congo red staining was used. Oxidative stress was monitored by measuring the MDA level and SOD activity, and to assess inflammation markers (IL-1β and TNF-α) in the hippocampus, ELISA method was employed.. Results: Spatial memory improved significantly in treatment group as measured by MWM. Probiotics administration reduced Aβ plaques in AD rats. MDA decreased and SOD increased in the treatment group. Besides, probiotics reduced IL-1β and TNF-α as inflammation markers in the AD model of rats. Conclusion: Our data revealed that probiotics are helpful in attenuating inflammation and oxidative stress in AD.