Abstract
No evidence of harms of probiotic Lactobacillus rhamnosus GG ATCC 53103 in healthy elderly-a phase I open label study to assess safety, tolerability and cytokine responses. Patricia L Hibberd;Lauren Kleimola;Anne-Maria Fiorino;Christine Botelho;Miriam Haverkamp;Irina Andreyeva;Debra Poutsiaka;Claire Fraser;Gloria Solano-Aguilar;David R Snydman. 2014. PLoS One. 9. PMID: 25438151

BACKGROUND: Although Lactobacillus rhamnosus GG ATCC 53103 (LGG) has been consumed by 2 to 5 million people daily since the mid 1990s, there are few clinical trials describing potential harms of LGG, particularly in the elderly. OBJECTIVES: The primary objective of this open label clinical trial is to assess the safety and tolerability of 1×1010 colony forming units (CFU) of LGG administered orally twice daily to elderly volunteers for 28 days. The secondary objectives were to evaluate the effects of LGG on the gastrointestinal microbiome, host immune response and plasma cytokines. METHODS: Fifteen elderly volunteers, aged 66-80 years received LGG capsules containing 1×1010 CFU, twice daily for 28 days and were followed through day 56. Volunteers completed a daily diary, a telephone call on study days 3, 7 and 14 and study visits in the Clinical Research Center at baseline, day 28 and day 56 to determine whether adverse events had occurred. Assessments included prompted and open-ended questions. RESULTS: There were no serious adverse events. The 15 volunteers had a total of 47 events (range 1-7 per volunteer), 39 (83%) of which were rated as mild and 40% of which were considered related to consuming LGG. Thirty-one (70%) of the events were expected, prompted symptoms while 16 were unexpected events. The most common adverse events were gastrointestinal (bloating, gas, and nausea), 27 rated as mild and 3 rated as moderate. In the exploratory analysis, the pro-inflammatory cytokine interleukin 8 decreased during LGG consumption, returning towards baseline one month after discontinuing LGG (p = 0.038) while there was no difference in other pro- or anti-inflammatory plasma cytokines. CONCLUSIONS: Lactobacillus rhamnosus GG ATCC 53103 is safe and well tolerated in healthy adults aged 65 years and older. TRIAL REGISTRATION: ClinicalTrials.gov NCT 01274598.
Yogurt containing probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 helps resolve moderate diarrhea and increases CD4 count in HIV/AIDS patients. Kingsley C Anukam;Emanual O Osazuwa;Humphrey B Osadolor;Andrew W Bruce;Gregor Reid. 2008. J Clin Gastroenterol. 42. PMID: 18223503

HIV/AIDS is changing the human landscape in sub-Saharan Africa. Relatively few patients receive antiretroviral therapy, and many suffer from debilitating diarrhea that affects their quality of life. Given the track record of probiotics to alleviate diarrhea, conventional yogurt fermented with Lactobacillus delbruekii var bulgaricus and Streptococcus thermophilus was supplemented with probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14. Twenty-four HIV/AIDS adult female patients (18 to 44 y) with clinical signs of moderate diarrhea, CD4 counts over 200, and not receiving antiretrovirals or dietary supplements, consumed either 100 mL supplemented or unsupplemented yogurt per day for 15 days. Hematologic profiles, CD4 cell counts, and quality of life was evaluated at baseline, 15 and 30 days postprobiotic-yogurt feeding. There was no significant alteration in the hematologic parameters of both groups before and after the probiotic-yogurt feeding. The probiotic yogurt group at baseline, 15 and 30 days had a mean WBC count of 5.8+/-0.76 x 10(9)/L, 6.0+/-1.02 x 10(9)/L, and 5.4+/-0.14 x 10(9)/L, respectively. However, the mean CD4 cell count remained the same or increased at 15 and 30 days in 11/12 probiotic-treated subjects compared to 3/12 in the control. Diarrhea, flatulence, and nausea resolved in 12/12 probiotic-treated subjects within 2 days, compared to 2/12 receiving yogurt for 15 days. This is the first study to show the benefits of probiotic yogurt on quality of life of women in Nigeria with HIV/AIDS, and suggests that perhaps a simple fermented food can provide some relief in the management of the AIDS epidemic in Africa.
Efficacy and safety of probiotic-supplemented triple therapy for eradication of Helicobacter pylori in children: a systematic review and network meta-analysis. Jue-Rong Feng;Fan Wang;Xiao Qiu;Lynne V McFarland;Peng-Fei Chen;Rui Zhou;Jing Liu;Qiu Zhao;Jin Li. 2017. Eur J Clin Pharmacol. 73. PMID: 28681177

AIM: The aim of this study was to identify the best probiotic supplementation in triple therapy for pediatric population with Helicobacter pylori infection. METHODS: Eligible trials were identified by comprehensive searches. Relative risks with 95% confidence intervals and relative ranks with P scores were assessed. RESULTS: Twenty-nine trials (3122 participants) involving 17 probiotic regimens were identified. Compared with placebo, probiotic-supplemented triple therapy significantly increased H. pylori eradication rates (relative ratio (RR) 1.19, 95% CI 1.13-1.25) and reduced the incidence of total side effects (RR 0.49, 95% CI 0.38-0.65). Furthermore, to supplemented triple therapy, Lactobacillus casei was identified the best for H. pylori eradication rates (P score = 0.84), and multi-strain of Lactobacillus acidophilus and Lactobacillus rhamnosus for total side effects (P score = 0.93). As for the subtypes of side effects, multi-strain of Bifidobacterium infantis, Bifidobacterium longum, L. acidophilus, L. casei, Lactobacillus plantarum, Lactobacillus reuteri, L. rhamnosus, Lactobacillus salivarius, Lactobacillus sporogenes, and Streptococcus thermophilus was the best to reduce the incidence of diarrhea; multi-strain of Bacillus mesentericus, Clostridium butyricum, and Streptococcus faecalis for loss of appetite; multi-strain of B. longum, Lactobacillus bulgaricus, and S. thermophilus for constipation; multi-strain of Bifidobacterium bifidum, B. infantis, L. acidophilus, L. bulgaricus, L. casei, L. reuteri, and Streptococcus for taste disturbance; Saccharomyces boulardii for bloating; and multi-strain of Bifidobacterium breve, B. infantis, L. acidophilus, L. bulgaricus, L. casei, L. rhamnosus, and S. thermophilus for nausea/vomiting. CONCLUSIONS: Probiotics are recommended to supplement triple therapy in pediatrics, and the effectiveness of triple therapy is associated with specific probiotic supplementation.
Probiotic Supplementation Decreases Chemotherapy-induced Gastrointestinal Side Effects in Patients With Acute Leukemia. Jesus Reyna-Figueroa;Elsa Barrón-Calvillo;Cecilia García-Parra;Patricia Galindo-Delgado;Carla Contreras-Ochoa;Alfredo Lagunas-Martínez;Freya H Campos-Romero;Jorge A Silva-Estrada;Ana E Limón-Rojas. 2019. J Pediatr Hematol Oncol. 41. PMID: 31033786

INTRODUCTION: In children with acute leukemia, gut microbiota is modified secondary to chemotherapy administration, leading to gastrointestinal side effects. Probiotics are microorganisms that can restore gut microbiota and may help alleviate gastrointestinal symptoms. The aim of this pilot study was to assess the effects of probiotic supplementation on chemotherapy-induced gastrointestinal side effects in children with acute leukemia (AL). METHODS: In this randomized pilot study, patients under 17 years of age diagnosed with AL who were on remission induction or remission reinduction chemotherapy were randomly assigned to receive probiotic supplementation (a concentration of 5×109 CFU per sachet was administered at a standard dose twice daily, by mouth) or no probiotic supplementation. The primary endpoint was the prevalence of gastrointestinal side effects. Vomiting, nausea, flatulence, dyspepsia, diarrhea, constipation, abdominal pain, and abdominal distention were assessed in both groups. RESULTS: Gastrointestinal side effects were less prevalent in the probiotic group, and 3 of the 8 gastrointestinal side effects (nausea, vomiting, and abdominal distension) significantly decreased in the probiotic group (P<0.05). We found for diarrhea a relative risk of 0.5 (95% confidence interval [CI], 0.2-1.2; P=0.04); for nausea an RR of 0.5 (95% CI, 0.4-0.8; P=0.04) and for vomiting an RR of 0.4 (95% CI, 0.2-0.9; P=0.04). CONCLUSIONS: Daily supplementation with Lactobacillus rhamnosus reduced chemotherapy-induced gastrointestinal side effects in children with AL.
Tolerability of a probiotic in subjects with a history of methicillin-resistant Staphylococcus aureus colonisation. S Warrack;P Panjikar;M Duster;N Safdar. 2014. Benef Microbes. 5. PMID: 25213147

Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen of major public health importance. Colonisation precedes infection; thus reducing MRSA carriage may be of benefit for reducing infection. Probiotics represent a novel approach to reducing MRSA carriage. We undertook a pilot feasibility randomised controlled trial of the tolerability and acceptability of probiotics for reducing nasal and intestinal carriage of MRSA. In addition, subjects were screened for vancomycin-resistant enterocococci (VRE). Subjects with a history of MRSA were recruited from a large, academic medical center and randomised to take either a placebo or probiotic (Lactobacillus rhamnosus HN001). Subjects returned to the clinic after four weeks for further testing to determine adherence to the probiotic regimen and colonisation of MRSA. 48 subjects were enrolled and randomised. Nearly 25% were transplant recipients and 30% had diabetes. The probiotic was well tolerated in the study population though minor side effects, such as nausea and bloating, were observed. A majority of the subjects randomised to HN001 had good adherence to the regimen. At the four week time point among subjects randomised to the probiotic, MRSA was detected in 67 and 50% of subjects colonised in the nares and the gastrointestinal tract, respectively. Three subjects who initially tested positive for VRE were negative after four weeks of probiotic exposure. Probiotics were well tolerated in our study population of largely immunocompromised subjects with multiple comorbidities. Adherence to the intervention was good. Probiotics should be studied further for their potential to reduce colonisation by multidrug resistant bacteria.
Can probiotic yogurt prevent diarrhoea in children on antibiotics? A double-blind, randomised, placebo-controlled study. Michael J Fox;Kiran D K Ahuja;Iain K Robertson;Madeleine J Ball;Rajaraman D Eri. 2015. BMJ Open. 5. PMID: 25588782

OBJECTIVE: To estimate the efficacy of a probiotic yogurt compared to a pasteurised yogurt for the prevention of antibiotic-associated diarrhoea in children. DESIGN AND SETTING: This was a multisite, randomised, double-blind, placebo-controlled clinical trial conducted between September 2009 and 2012. The study was conducted through general practices and pharmacies in Launceston, Tasmania, Australia. PARTICIPANTS AND INTERVENTIONS: Children (aged 1-12 years) prescribed antibiotics, were randomised to receive 200 g/day of either yogurt (probiotic) containing Lactobacillus rhamnosus GG (LGG), Bifidobacterium lactis (Bb-12) and Lactobacillus acidophilus (La-5) or a pasteurised yogurt (placebo) for the same duration as their antibiotic treatment. OUTCOMES: Stool frequency and consistency were recorded for the duration of treatment plus 1 week. Primary outcome was stool frequency and consistency, classified at different levels of diarrhoea severity. Due to the small number of cases of diarrhoea, comparisons between groups were made using Fisher's exact analysis. RESULTS: 72 children commenced and 70 children (36 placebo and 34 probiotic) completed the trial. There were no incidents of severe diarrhoea (stool consistency ≥6, ≥3 stools/day for ≥2 consecutive days) in the probiotic group and six in the placebo group (Fisher's exact p=0.025). There was also only one episode of minor diarrhoea (stool consistency ≥5, ≥2 stools/day for ≥2 days in the probiotic group compared to 21 in the placebo group (Fisher's exact p<0.001). The probiotic group reported fewer adverse events (1 had abdominal pain, 1 vomited and 1 had headache) than the placebo group (6 had abdominal pain, 4 had loss of appetite and 1 had nausea). CONCLUSIONS: A yogurt combination of LGG, La-5 and Bb-12 is an effective method for reducing the incidence of antibiotic-associated diarrhoea in children. TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry ACTRN12609000281291.
Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Joshua Z Goldenberg;Lyubov Lytvyn;Justin Steurich;Patricia Parkin;Sanjay Mahant;Bradley C Johnston. 2015. Cochrane Database Syst Rev. . PMID: 26695080

BACKGROUND: Antibiotics are frequently prescribed in children. They alter the microbial balance within the gastrointestinal tract, commonly resulting in antibiotic-associated diarrhea (AAD). Probiotics may prevent AAD via restoration of the gut microflora. OBJECTIVES: The primary objectives were to assess the efficacy and safety of probiotics (any specified strain or dose) used for the prevention of AAD in children. SEARCH METHODS: MEDLINE, EMBASE, CENTRAL, CINAHL, AMED, and the Web of Science (inception to November 2014) were searched along with specialized registers including the Cochrane IBD/FBD review group, CISCOM (Centralized Information Service for Complementary Medicine), NHS Evidence, the International Bibliographic Information on Dietary Supplements as well as trial registries. Letters were sent to authors of included trials, nutraceutical and pharmaceutical companies, and experts in the field requesting additional information on ongoing or unpublished trials. Conference proceedings, dissertation abstracts, and reference lists from included and relevant articles were also searched. SELECTION CRITERIA: Randomized, parallel, controlled trials in children (0 to 18 years) receiving antibiotics, that compare probiotics to placebo, active alternative prophylaxis, or no treatment and measure the incidence of diarrhea secondary to antibiotic use were considered for inclusion. DATA COLLECTION AND ANALYSIS: Study selection, data extraction as well as methodological quality assessment using the risk of bias instrument was conducted independently and in duplicate by two authors. Dichotomous data (incidence of diarrhea, adverse events) were combined using a pooled risk ratio (RR) or risk difference (RD), and continuous data (mean duration of diarrhea, mean daily stool frequency) as mean difference (MD), along with their corresponding 95% confidence interval (95% CI). For overall pooled results on the incidence of diarrhea, sensitivity analyses included available case versus extreme-plausible analyses and random- versus fixed-effect models. To explore possible explanations for heterogeneity, a priori subgroup analysis were conducted on probiotic strain, dose, definition of antibiotic-associated diarrhea, as well as risk of bias. We also conducted post hoc subgroup analyses by patient diagnosis, single versus multi-strain, industry sponsorship, and inpatient status. The overall quality of the evidence supporting the outcomes was evaluated using the GRADE criteria. MAIN RESULTS: Twenty-three studies (3938 participants) met the inclusion criteria. Trials included treatment with either Bacillus spp., Bifidobacterium spp., Clostridium butyricum, Lactobacilli spp., Lactococcus spp., Leuconostoc cremoris, Saccharomyces spp., orStreptococcus spp., alone or in combination. Eleven studies used a single strain probiotic, four combined two probiotic strains, three combined three probiotic strains, one combined four probiotic strains, two combined seven probiotic strains, one included ten probiotic strains, and one study included two probiotic arms that used three and two strains respectively. The risk of bias was determined to be high or unclear in 13 studies and low in 10 studies. Available case (patients who did not complete the studies were not included in the analysis) results from 22/23 trials reporting on the incidence of diarrhea show a precise benefit from probiotics compared to active, placebo or no treatment control. The incidence of AAD in the probiotic group was 8% (163/1992) compared to 19% (364/1906) in the control group (RR 0.46, 95% CI 0.35 to 0.61; I(2) = 55%, 3898 participants). A GRADE analysis indicated that the overall quality of the evidence for this outcome was moderate. This benefit remained statistically significant in an extreme plausible (60% of children loss to follow-up in probiotic group and 20% loss to follow-up in the control group had diarrhea) sensitivity analysis, where the incidence of AAD in the probiotic group was 14% (330/2294) compared to 19% (426/2235) in the control group (RR 0.69; 95% CI 0.54 to 0.89; I(2) = 63%, 4529 participants). None of the 16 trials (n = 2455) that reported on adverse events documented any serious adverse events attributable to probiotics. Meta-analysis excluded all but an extremely small non-significant difference in adverse events between treatment and control (RD 0.00; 95% CI -0.01 to 0.01). The majority of adverse events were in placebo, standard care or no treatment group. Adverse events reported in the studies include rash, nausea, gas, flatulence, abdominal bloating, abdominal pain, vomiting, increased phlegm, chest pain, constipation, taste disturbance, and low appetite. AUTHORS' CONCLUSIONS: Moderate quality evidence suggests a protective effect of probiotics in preventing AAD. Our pooled estimate suggests a precise (RR 0.46; 95% CI 0.35 to 0.61) probiotic effect with a NNT of 10. Among the various probiotics evaluated, Lactobacillus rhamnosus or Saccharomyces boulardii at 5 to 40 billion colony forming units/day may be appropriate given the modest NNT and the likelihood that adverse events are very rare. It is premature to draw conclusions about the efficacy and safety of other probiotic agents for pediatric AAD. Although no serious adverse events were observed among otherwise healthy children, serious adverse events have been observed in severely debilitated or immuno-compromised children with underlying risk factors including central venous catheter use and disorders associated with bacterial/fungal translocation. Until further research has been conducted, probiotic use should be avoided in pediatric populations at risk for adverse events. Future trials would benefit from a standard and valid outcomes to measure AAD.
Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Shelby R Hayes;Ashley J Vargas. 2016. Explore (NY). 12. PMID: 27688016

Goldenberg JZ, Lytvyn L, Steurich J, Parkin P, Mahant S, Johnston BC. Probiotics for the prevention of pediatric antibiotic-associated diarrhea.Cochrane Database Syst Rev2015, Issue 12. Art. No.: CD004827. http://dx.doi.org/10.1002/14651858.CD004827.pub4. BACKGROUND: Antibiotics are frequently prescribed in children. They alter the microbial balance within the gastrointestinal tract, commonly resulting in antibiotic-associated diarrhea (AAD). Probiotics may prevent AAD via restoration of the gut microflora. OBJECTIVES: The primary objectives were to assess the efficacy and safety of probiotics (any specified strain or dose) used for the prevention of AAD in children. SEARCH METHODS: MEDLINE, EMBASE, CENTRAL, CINAHL, AMED, and the Web of Science (inception to November 2014) were searched along with specialized registers including the Cochrane IBD/FBD review group, CISCOM (Centralized Information Service for Complementary Medicine), NHS Evidence, the International Bibliographic Information on Dietary Supplements, as well as trial registries. Letters were sent to authors of included trials, nutraceutical and pharmaceutical companies, and experts in the field requesting additional information on ongoing or unpublished trials. Conference proceedings, dissertation abstracts, and reference lists from included and relevant articles were also searched. SELECTION CRITERIA: Randomized, parallel, controlled trials in children (0-18 years) receiving antibiotics, that compare probiotics to placebo, active alternative prophylaxis, or no treatment and measure the incidence of diarrhea secondary to antibiotic use were considered for inclusion. DATA COLLECTION AND ANALYSIS: Study selection, data extraction, and methodological quality assessment using the risk of bias instrument were conducted independently and in duplicate by two authors. Dichotomous data (incidence of diarrhea and adverse events) were combined using a pooled risk ratio (RR) or risk difference (RD), and continuous data (mean duration of diarrhea and mean daily stool frequency) as mean difference (MD), along with their corresponding 95% confidence interval (95% CI). For overall pooled results on the incidence of diarrhea, sensitivity analyses included available case versus extreme-plausible analyses and random- versus fixed-effect models. To explore possible explanations for heterogeneity, a priori subgroup analysis was conducted on probiotic strain, dose, definition of antibiotic-associated diarrhea, and risk of bias. We also conducted post hoc subgroup analyses by patient diagnosis, single versus multi-strain, industry sponsorship, and inpatient status. The overall quality of the evidence supporting the outcomes was evaluated using the GRADE criteria. MAIN RESULTS: Overall, 23 studies (3938 participants) met the inclusion criteria. Trials included treatment with either Bacillus spp., Bifidobacterium spp., Clostridium butyricum, Lactobacilli spp., Lactococcus spp., Leuconostoc cremoris, Saccharomyces spp., or Streptococcus spp., alone or in combination. Eleven studies used a single-strain probiotic, four combined two probiotic strains, three combined three probiotic strains, one combined four probiotic strains, two combined seven probiotic strains, one included ten probiotic strains, and one study included two probiotic arms that used three and two strains, respectively. The risk of bias was determined to be high or unclear in 13 studies and low in 10 studies. Available case (patients who did not complete the studies were not included in the analysis) results from 22/23 trials reporting on the incidence of diarrhea show a precise benefit from probiotics compared to active, placebo, or no treatment control. The incidence of AAD in the probiotic group was 8% (163/1992) compared to 19% (364/1906) in the control group (RR = 0.46; 95% CI: 0.35-0.61; I2 = 55%, 3898 participants). A GRADE analysis indicated that the overall quality of the evidence for this outcome was moderate. This benefit remained statistically significant in an extreme-plausible (60% of children lost to follow-up in probiotic group and 20% lost to follow-up in the control group had diarrhea) sensitivity analysis, where the incidence of AAD in the probiotic group was 14% (330/2294) compared to 19% (426/2235) in the control group (RR = 0.69; 95% CI: 0.54-0.89; I2 = 63%, 4529 participants). None of the 16 trials (n = 2455) that reported on adverse events documented any serious adverse events attributable to probiotics. Meta-analysis excluded all but an extremely small non-significant difference in adverse events between treatment and control (RD = 0.00, 95% CI: -0.01 to 0.01). The majority of adverse events were in placebo, standard care, or no treatment group. Adverse events reported in the studies include rash, nausea, gas, flatulence, abdominal bloating, abdominal pain, vomiting, increased phlegm, chest pain, constipation, taste disturbance, and low appetite. AUTHORS׳ CONCLUSIONS: Moderate quality evidence suggests a protective effect of probiotics in preventing AAD. Our pooled estimate suggests a precise (RR 0.46; 95% CI: 0.35-0.61) probiotic effect with an NNT of 10. Among the various probiotics evaluated, Lactobacillus rhamnosus or Saccharomyces boulardii at 5-40 billion colony-forming units/day may be appropriate given the modest NNT and the likelihood that adverse events are very rare. It is premature to draw conclusions about the efficacy and safety of other probiotic agents for pediatric AAD. Although no serious adverse events were observed among otherwise healthy children, serious adverse events have been observed in severely debilitated or immunocompromised children with underlying risk factors including central venous catheter use and disorders associated with bacterial/fungal translocation. Until further research has been conducted, probiotic use should be avoided in pediatric populations at risk for adverse events. Future trials would benefit from a standard and valid outcomes to measure AAD.
Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Qin Guo;Joshua Z Goldenberg;Claire Humphrey;Regina El Dib;Bradley C Johnston. 2019. Cochrane Database Syst Rev. 4. PMID: 31039287

BACKGROUND: Antibiotics alter the microbial balance commonly resulting in antibiotic-associated diarrhea (AAD). Probiotics may prevent AAD via providing gut barrier, restoration of the gut microflora, and other potential mechanisms of action. OBJECTIVES: The primary objectives were to assess the efficacy and safety of probiotics (any specified strain or dose) used for the prevention of AAD in children. SEARCH METHODS: MEDLINE, Embase, CENTRAL, CINAHL, and the Web of Science (inception to 28 May 2018) were searched along with registers including the ISRCTN and Clinicaltrials.gov. We also searched the NICE Evidence Services database as well as reference lists from relevant articles. SELECTION CRITERIA: Randomized, parallel, controlled trials in children (0 to 18 years) receiving antibiotics, that compare probiotics to placebo, active alternative prophylaxis, or no treatment and measure the incidence of diarrhea secondary to antibiotic use were considered for inclusion. DATA COLLECTION AND ANALYSIS: Study selection, data extraction, and risk of bias assessment were conducted independently by two authors. Dichotomous data (incidence of AAD, adverse events) were combined using a pooled risk ratio (RR) or risk difference (RD), and continuous data (mean duration of diarrhea) as mean difference (MD), along with corresponding 95% confidence interval (95% CI). We calculated the number needed to treat for an additional beneficial outcome (NNTB) where appropriate. For studies reporting on microbiome characteristics using heterogeneous outcomes, we describe the results narratively. The certainty of the evidence was evaluated using GRADE. MAIN RESULTS: Thirty-three studies (6352 participants) were included. Probiotics assessed included Bacillus spp., Bifidobacterium spp., Clostridium butyricum, Lactobacilli spp., Lactococcus spp., Leuconostoc cremoris, Saccharomyces spp., orStreptococcus spp., alone or in combination. The risk of bias was determined to be high in 20 studies and low in 13 studies. Complete case (patients who did not complete the studies were not included in the analysis) results from 33 trials reporting on the incidence of diarrhea show a precise benefit from probiotics compared to active, placebo or no treatment control.After 5 days to 12 weeks of follow-up, the incidence of AAD in the probiotic group was 8% (259/3232) compared to 19% (598/3120) in the control group (RR 0.45, 95% CI 0.36 to 0.56; I² = 57%, 6352 participants; NNTB 9, 95% CI 7 to 13; moderate certainty evidence). Nineteen studies had loss to follow-up ranging from 1% to 46%. After making assumptions for those lost, the observed benefit was still statistically significant using an extreme plausible intention-to-treat (ITT) analysis, wherein the incidence of AAD in the probiotic group was 12% (436/3551) compared to 19% (664/3468) in the control group (7019 participants; RR 0.61; 95% CI 0.49 to 0.77; P <0.00001; I² = 70%). An a priori available case subgroup analysis exploring heterogeneity indicated that high dose (≥ 5 billion CFUs per day) is more effective than low probiotic dose (< 5 billion CFUs per day), interaction P value = 0.01. For the high dose studies the incidence of AAD in the probiotic group was 8% (162/2029) compared to 23% (462/2009) in the control group (4038 participants; RR 0.37; 95% CI 0.30 to 0.46; P = 0.06; moderate certainty evidence). For the low dose studies the incidence of AAD in the probiotic group was 8% (97/1155) compared to 13% (133/1059) in the control group (2214 participants; RR 0.68; 95% CI 0.46 to 1.01; P = 0.02). Again, assumptions for loss to follow-up using an extreme plausible ITT analysis was statistically significant. For high dose studies the incidence of AAD in the probiotic group was 13% (278/2218) compared to 23% (503/2207) in control group (4425 participants; RR 0.54; 95% CI 0.42 to 0.70; P <0.00001; I² = 68%; moderate certainty evidence).None of the 24 trials (4415 participants) that reported on adverse events reported any serious adverse events attributable to probiotics. Adverse event rates were low. After 5 days to 4 weeks follow-up, 4% (86/2229) of probiotics participants had an adverse event compared to 6% (121/2186) of control participants (RD 0.00; 95% CI -0.01 to 0.01; P < 0.00001; I² = 75%; low certainty evidence). Common adverse events included rash, nausea, gas, flatulence, abdominal bloating, and constipation.After 10 days to 12 weeks of follow-up, eight studies recorded data on our secondary outcome, the mean duration of diarrhea; with probiotics reducing diarrhea duration by almost one day (MD -0.91; 95% CI -1.38 to -0.44; P <0.00001; low certainty evidence). One study reported on microbiome characteristics, reporting no difference in changes with concurrent antibiotic and probiotic use. AUTHORS' CONCLUSIONS: The overall evidence suggests a moderate protective effect of probiotics for preventing AAD (NNTB 9, 95% CI 7 to 13). Using five criteria to evaluate the credibility of the subgroup analysis on probiotic dose, the results indicate the subgroup effect based on high dose probiotics (≥ 5 billion CFUs per day) was credible. Based on high-dose probiotics, the NNTB to prevent one case of diarrhea is 6 (95% CI 5 to 9). The overall certainty of the evidence for the primary endpoint, incidence of AAD based on high dose probiotics was moderate due to the minor issues with risk of bias and inconsistency related to a diversity of probiotic agents used. Evidence also suggests that probiotics may moderately reduce the duration of diarrhea, a reduction by almost one day. The benefit of high dose probiotics (e.g. Lactobacillus rhamnosus orSaccharomyces boulardii) needs to be confirmed by a large well-designed multi-centered randomized trial. It is premature to draw firm conclusions about the efficacy and safety of 'other' probiotic agents as an adjunct to antibiotics in children. Adverse event rates were low and no serious adverse events were attributable to probiotics. Although no serious adverse events were observed among inpatient and outpatient children, including small studies conducted in the intensive care unit and in the neonatal unit, observational studies not included in this review have reported serious adverse events in severely debilitated or immuno-compromised children with underlying risk factors including central venous catheter use and disorders associated with bacterial/fungal translocation.