The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial. Zlatan Mujagic;Paul de Vos;Mark V Boekschoten;Coen Govers;Harm-Jan H M Pieters;Nicole J W de Wit;Peter A Bron;Ad A M Masclee;Freddy J Troost. 2017. Sci Rep. 7. PMID: 28045137

The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement, which may lead to beneficial effects in a stressed human gut mucosa. Ten healthy volunteers participated in four different intervention periods: 7-day oral intake of either L. plantarum WCFS1, CIP104448, TIFN101 or placebo, proceeded by a 4 weeks wash-out period. Lactulose-rhamnose ratio (an indicator of small intestinal permeability) increased after intake of indomethacin, which was given as an artificial stressor of the gut mucosal barrier (mean ratio 0.06 ± 0.04 to 0.10 ± 0.06, p = 0.001), but was not significantly affected by the bacterial interventions. However, analysis in small intestinal biopsies, obtained by gastroduodenoscopy, demonstrated that particularly L. plantarum TIFN101 modulated gene transcription pathways related to cell-cell adhesion with high turnover of genes involved in tight- and adhesion junction protein synthesis and degradation (e.g. actinin alpha-4, metalloproteinase-2). These effects were less pronounced for L. plantarum WCFS1 and CIP104448. In conclusion, L. plantarum TIFN101 induced the most pronounced probiotic properties with specific gene transcriptional effects on repair processes in the compromised intestine of healthy subjects.
The toll-like receptor family protein RP105/MD1 complex is involved in the immunoregulatory effect of exopolysaccharides from Lactobacillus plantarum N14. Yo Murofushi;Julio Villena;Kyoko Morie;Paulraj Kanmani;Masanori Tohno;Tomoyuki Shimazu;Hisashi Aso;Yoshihito Suda;Kenji Hashiguchi;Tadao Saito;Haruki Kitazawa. 2014. Mol Immunol. 64. PMID: 25466614

The radioprotective 105 (RP105)/MD1 complex is a member of the Toll-like receptor (TLR) family. It was reported that RP105/MD1 cooperates with the lipopolysaccharide (LPS) receptor TLR4/MD2 complex and plays a crucial role in the response of immune cells to LPS. This work evaluated whether RP105, TLR4 or TLR2 were involved in the immunoregulatory capacities of Lactobacillus plantarum N14 (LP14) or its exopolysaccharides (EPS). EPS from LP14 were fractionated into neutral (NPS) and acidic (APS) EPS by anion exchange chromatography. Experiments with transfectant HEK(RP105/MD1) and HEK(TLR2) cells demonstrated that LP14 strongly activated NF-κB via RP105 and TLR2. When we studied the capacity of APS to activate NF-κB pathway in HEK(RP105/MD1) and HEK(TLR4) cells; we observed that APS strongly stimulated both transfectant cells. Our results also showed that LP14 and APS were able to decrease the production of pro-inflammatory cytokines (IL-6, IL-8 and MCP-1) in porcine intestinal epithelial (PIE) cells in response to enterotoxigenic Escherichia coli (ETEC) challenge. In order to confirm the role of TLR2, TLR4 and RP105 in the immunoregulatory effect of APS from LP14, we used small interfering RNA (siRNA) to knockdown these receptors in PIE cells. The capacity of LP14 and APS to modulate pro-inflammatory cytokine expression was significantly reduced in PIE(RP105-/-) cells. It was also shown that LP14 and APS were capable of upregulating negative regulators of the TLR signaling in PIE cells. This work describes for the first time that a Lactobacillus strain and its EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependend manner.
Lactobacillus plantarum NCU116 Attenuates Cyclophosphamide-Induced Immunosuppression and Regulates Th17/Treg Cell Immune Responses in Mice. Junhua Xie;Shaoping Nie;Qiang Yu;Junyi Yin;Tao Xiong;Deming Gong;Mingyong Xie. 2016. J Agric Food Chem. 64. PMID: 26822718

The balance of T helper cells 17 (Th17)/regulatory T cells (Treg) plays a key role in maintaining a normal immune response. It is well-known that cyclophosphamide (CTX) applied at high dose often damages the immune system by inhibiting immune cell proliferation. In this study, the immunomodulating effects of Lactobacillus plantarum NCU116 in CTX-induced immunosuppression mice were investigated. Results showed that the levels of cytokines interleukin (IL)-17 and IL-21 were significantly increased after 10 days of treatment with a high dose of NCU116 (46.92 ± 4.28 and 119.92 ± 10.89, respectively) compared with the model group (36.20 ± 2.63, 61.00 ± 6.92, respectively), and the levels of cytokines IL-23 and TGF-β3 of the three NCU116 treatment groups were significantly higher than that of the model group (90.48 ± 6.33 and 140.45 ± 14.30, respectively) (p < 0.05) and close to 62 and 69% of the normal group's level (140.98 ± 14.74 and 266.95 ± 23.11, respectively) at 10 days. The bacterium was also found to increase the expression levels of Th17 immune response and Treg immune response specific transcription factors RORγt and Foxp3. In addition, the bacterium significantly increased the number of CD4(+)T cells and dendrtic cells (DCs) and up-regulated mRNA expression of Toll-like receptors (TLRs). These findings demonstrated that NCU116 has the potential ability to enhance intestinal mucosa immunity and regulate the Th17/Treg balance, which may be attributed to the TLR pathway in DCs.